Electrical & Electronics Tips: October 2017

Parts of a Power Transformer

What Is a Transformer?

A transformer is an electrical device that transfers electrical energy from one circuit to another by electromagnetic induction (also called transformer action). It is used to step up or step down ac voltage.
Read - 

How to Make a Simple Electric Generator

Components of a Transformer

Basic Parts of a Transformer

These are the basic components of a transformer.
  1. Laminated core
  2. Windings
  3. Insulating materials
  4. Transformer oil
  5. Tap Changer
  6. Oil Conservator
  7. Breather
  8. Cooling tubes
  9. Buchholz Relay
  10. Explosion Vent
Of the above, laminated soft iron core, windings and insulating material are the primary parts and are present in all transformers, whereas the rest can be seen only in transformers having a capacity of more than 100KVA.

Core

Core

The core acts as the support to the winding of the transformer. It also provides a low reluctance path for the flow of magnetic flux. It is made of the laminated soft iron core in order to reduce eddy current loss and Hysteresis loss. The composition of a transformer core depends on such as factors voltage, current, and frequency. The diameter of the transformer core is directly proportional to copper loss and is inversely proportional to iron loss. If the diameter of the core is decreased, the weight of the steel in the core is reduced, which leads to less core loss of the transformer and the copper loss increase. When the diameter of the core is increased, the vice versa occurs.

Why Are Windings Made of Copper?

  • Copper has high conductivity. This minimizes losses as well as the amount of copper needed for the winding (volume & weight of winding).
  • Copper has high ductility. This means it is easy to bend conductors into tight windings around the transformer's core, thus minimizing the amount of copper needed as well as the overall volume of the winding.

Winding

Two sets of the winding are made over the transformer core and are insulated from each other. Winding consists of several turns of copper conductors bundled together and connected in series.
Winding can be classified in two different ways:
  1. Based on the input and output supply
  2. Based on the voltage range
Within the input/output supply classification, winding is further categorized:
  1. Primary winding - These are the winding to which the input voltage is applied.
  2. Secondary winding - These are the winding to which the output voltage is applied.
Within the voltage range classification, winding is further categorized:
  1. High voltage winding - It is made of the copper conductor. The number of turns made shall be the multiple of the number of turns in the low voltage winding. The conductor used will be thinner than that of the low voltage winding.
  2. Low voltage winding - It consists of the fewer number of turns than the high voltage winding. It is made of thick copper conductors. This is because the current in the low voltage winding is higher than that of high voltage winding.
Input supply to the transformers can be applied from either low voltage (LV) or high voltage (HV) winding based on the requirement.
Read - 

মাত্র 2200 টাকায় তৈরি করুন আপনার IPS

Insulating Materials

Insulating paper and cardboard are used in transformers to isolate primary and secondary winding from each other and from the transformer core.
Transformer oil is another insulating material. Transformer oil performs two important functions: in addition to insulating function, it can also cool the core and coil assembly. The transformer's core and winding must be completely immersed in the oil. Normally, hydrocarbon mineral oils are used as transformer oil. Oil contamination is a serious problem because contamination robs the oil of its dielectric properties and renders it useless as an insulating medium.

Parts of the Transformer

Conservator

The conservator conserves the transformer oil. It is an airtight, metallic, cylindrical drum that is fitted above the transformer. The conservator tank is vented to the atmosphere at the top, and the normal oil level is approximately in the middle of the conservator to allow the oil to expand and contract as the temperature varies. The conservator is connected to the main tank inside the transformer, which is completely filled with transformer oil through a pipeline.

Breather

Breather

The breather controls the moisture level in the transformer. Moisture can arise when temperature variations cause expansion and contraction of the insulating oil, which then causes the pressure to change inside the conservator. Pressure changes are balanced by a flow of atmospheric air in and out of the conservator, which is how moisture can enter the system.
If the insulating oil encounters moisture, it can affect the paper insulation or may even lead to internal faults. Therefore, it is necessary that the air entering the tank is moisture-free.
The transformer's breather is a cylindrical container that is filled with silica gel. When the atmospheric air passes through the silica gel of the breather, the air's moisture is absorbed by the silica crystals. The breather acts like an air filter for the transformer and controls the moisture level inside a transformer. It is connected to the end of breather pipe.

Tap Changer

Tap Changer

The output voltage of transformers varies according to its input voltage and the load. During loaded conditions, the voltage on the output terminal decreases, whereas during off-load conditions the output voltage increases. In order to balance the voltage variations, tap changers are used. Tap changers can be either on-load tap changers or off-load tap changers. In an on-load tap changer, the tapping can be changed without isolating the transformer from the supply. In an off-load tap changer, it is done after disconnecting the transformer. Automatic tap changers are also available.

Cooling Tubes

Cooling tubes are used to cool the transformer oil. The transformer oil is circulated through the cooling tubes. The circulation of the oil may either be natural or forced. In natural circulation, when the temperature of the oil rises the hot oil naturally rises to the top and the cold oil sinks downward. Thus the oil naturally circulates through the tubes. In forced circulation, an external pump is used to circulate the oil.

Buchholz Relay

The Buchholz Relay is a protective device container housed over the connecting pipe from the main tank to the conservator tank. It is used to sense the faults occurring inside the transformer. It is a simple relay that is operated by the gases emitted during the decomposition of transformer oil during internal faults. It helps in sensing and protecting the transformer from internal faults.

Explosion Vent

The explosion vent is used to expel boiling oil in the transformer during heavy internal faults in order to avoid the explosion of the transformer. During heavy faults, the oil rushes out of the vent. The level of the explosion vent is normally maintained above the level of the conservatory tank.

More About Transformers

I have written a series of articles to help the reader understand power transformers. I've listed two here, and if you are interested in finding more, you can find them by clicking on my author profile at the top of this article.

Complete basics and theory of Electrical Transformer

How to Make a Simple Electric Generator

Electric generators are devices that use alternating magnetic fields to create a current through a wire circuit. While full scale models can be complex and expensive to build, you can create a simple electric generator easily. All you need to do is create a simple frame to hold the wire and magnet, wind the wire, connect it to an electrical device, and glue the magnet onto a spinning shaft. This even works well to teach electromagnetic properties, or display as a science project

Part1
EditBuilding the Frame

  1. 1
    Cut the cardboard. Cardboard will serve as the frame and support for your simple generator. Use a ruler to measure a cardboard strip that is 8 centimetres (3.1 in) by 30.4 centimetres (12.0 in). Cut this strip out with scissors or a utility knife. This single piece will be folded to form the frame.[1]
  2. 2
    Mark the cardboard. Use a ruler to measure along the length of the cardboard. Make your first mark at 8 centimetres (3.1 in). Your second mark should be at 11.5 centimetres (4.5 in), and your third mark should be at 19.5 centimetres (7.7 in). The final mark will be at 22.7 centimetres (8.9 in).[2]
    • This creates segments of 8 centimetres (3.1 in), 3.5 centimetres (1.4 in), 8 centimetres (3.1 in), 3.2 centimetres (1.3 in), and 7.7 centimetres (3.0 in). Do not cut these segments.
  3. 3
    Fold the cardboard. Fold the cardboard along each mark. This will make your flat piece of cardboard into a rectangular frame. This frame will house the components of your electric motor.[3]
  4. 4
    Slide the metal shaft through the support frame. Push a nail through the center of the cardboard frame. Make sure you go through all three pieces of cardboard that are folded into the center. This will create the hole for your shaft. You can now insert a metal shaft, or use the nail as your shaft.[4]
    • The metal shaft does not have to be anything in particular. Any piece of metal that will fit through the hole and come all the way out the other side of the frame is acceptable. The nail you use to make the hole will work perfectly.

Part2
EditCreating the Circuit

  1. 1
    Wind the copper wire. Make several turns around the cardboard box with enamel coated copper wire (#30 magnet wire). Wind 200 feet (61 m) of wire as tight as you can. Leave about 16 to 18 inches (40.6 to 45.7 cm) of wire loose on each end to connect to your meter, light bulb, or other electronic device. The more "turns" or winds you make around the cardboard frame, the more power your generator should produce.[5]
  2. 2
    Strip the ends of the wire. Use a knife or a wire stripper to remove the insulation from each end of the wire. Remove about 2.54 centimetres (1.00 in) of insulation from each side. This will allow you to connect the wire to an electronic device.[6]
  3. 3
    Connect the wires to an electronic device. Attach the two wires you have loose at the ends of the windings to a red LED, #49 miniature bulb, or a 1.5V grain-of-wheat lamp. Or, connect the test leads from an AC voltmeter or multimeter to them. Keep in mind that you are producing a very low voltage, and larger devices (e.g. a regular light bulb) will not be powered by this generator.[7]

Part3
EditSetting the Magnets

  1. 1
    Glue the magnets to the shaft. Use a high strength hot melt glue or epoxy to glue four ceramic magnets to the shaft. You want the magnet to be stationary with respect to the shaft. The magnets should be glued onto the shaft after the shaft has been inserted into the frame. Allow the glue to dry for several minutes (the instructions on the container can tell you exact drying times for your type of glue).[8]
    • For best results, use 1x2x5 cm ceramic magnets (these can be found online for a reasonable price). Glue them so that two magnets are facing the coil with their north side, and two are facing the coil with their south side.
  2. 2
    Turn the shaft with your fingers. This allows you to see if the ends of the magnets hit the inside of the frame. The magnets must turn freely, but as close as possible to the walls of the frame. Again, having the magnet's ends as close the copper wire windings as possible will increase the "exciting" action of the magnetic fields the magnet produces.[9]
  3. 3
    Spin the shaft as fast as possible. You may want to wind a string around the end of the shaft, then pull it sharply to turn the magnets. You could even just spin it with your fingers. As the shaft turns, you should get a small voltage (enough to light a 1.5 volt light bulb).[10]
    • You could improve the power output by putting a pinwheel on the end of the shaft and connecting it to an electric fan to turn the wheel. Keep in mind that this is only good to demonstrate the operation of the generator since you use more electricity turning it than you create.
  4. More Information
  5. Also Read

    Complete basics and theory of Electrical Transformer

    Electrical Transformer is the most used electrical machine in power system. Both in the power transmission and distribution of a network, the transformer has its mandatory use.

    1. Basics of electrical transformer

    1. What is electrical transformer

    A transformer is an electrical machine that transfers unchanged electrical energy and frequency with a modification of voltage and current between two circuits or more than two circuits.
    So transformer –
    • Does not modify the power between primary and secondary.
    • Does not modify the frequency of AC current or voltage.
    • Only modify the voltage and current.

    2. List of international standard for transformer

    • IEC 60076-8 Power transformers –Application guide. IEC (International Electrotechnical Commission).
    • IEC 60050(421):1990, International Electrotechnical Vocabulary (IEV) – Chapter 421: Power transformers and reactors
    • IEC 60354:1991, Loading guide for oil-immersed power transformers
    • IEC 60722:1982, Guide to the lightning impulse and switching impulse testing of power transformers and reactors.
    • IEC 60905:1987, Loading guide for dry-type power transformers.
    • IEC 61378-1: 1997, Converter transformers – Part 1: Transformers for industrial applications

    3. Use of electrical transformer

    1. To change the voltage and current level: Modern ac transmission technology requires the voltage to be higher such as 11KV, 33KV, 133Kv, 232KV. This is required to minimize the transmission loss and making the transmission line lighter, thinner hence less copper is needed. On the other hand, the consumer end voltage level is 400, 200, 120 etc. The transformer is used to step up or step down the voltage level. Also, the potential transformer is used in some protection and measurements purposes. To change the current level- Changing current level is required in some protection and measurement instruments named is a current transformer.
    2. To provide galvanic isolationSome transformer is used to isolate two circuits (no physical connection) but maintain the energy transfer by electromagnetic induction. This way both circuits can be safe from each other also different potential can be maintained.
    3. To provide impedance matching: Power is unchanged in the transformer primary and secondary, only voltage and current is changed. These can be used to convert the impedance of a load to a different level. R=V/I, now say V=200, I=10 then R=20ohm; and for V=100, I=20 then R=5ohm. In both cases, the power is the same 2000Watt but impedance is varied. As per Maximum Power Transfer Theorem maximum power is transferred when the impedance is matching. Thus impedance matching mostly used in an audio system where the impedance of speaker and phone are of mismatch.
    impedance matching transformer
    Impedance matching transformer mostly used in audio and transmitter technology.

    4. Types of Electrical transformer

    • Step Up- Increases the secondary voltage and thus the secondary current is decreased.
    • Step down- Decreases the secondary voltage and thus secondary current is increased.
    • Power transformer- used in between the power plant (power generation) up to the distribution network. Specially designed to withstand higher stress & faults in the transmission and generation network.
    • Distribution transformer – Used in the primary or secondary distribution network. As it is at the consumer end -specially designed for continuous service, variable load demand.
    • Phase shifting transformer- to control the amount flow of active power between two transmission lines.
    • Traction type transformer- Transformer used in the electric rail services to supply electric power to the rail or tram from the overhead electrical power cable.
    • Rectifier transformer or HVDC (High voltage DC transformer) – This types of the power transformer is used in high voltage DC network where there is AC network. HVDC transformer is the combination of (a) regular transformer + rectifier circuit(to convert AC to DC) in primary or secondary ; or (b)regular transformer + inverter circuit( to convert DC to AC ) in primary or secondary.
    • Liquid type – Transformer oil is used as a dielectric medium and also as a cooling medium. The transformer core is submerged in the transformer oil. This types of the transformer are of low cost with a disadvantage of environmental impact (transformer oil is not environment-friendly) and the possibility of a fire hazard.
    • Dry type transformer-Aluminum and resin is used as the structural material in dry type transformer. Both these material has the high dielectric strength and also self-cooling property. To minimize environmental contamination and fire hazard, customers are specifying dry-type transformers more frequently. Also, there is less space required, less civil work is needed. Dry type transformers are costly.

    2. Electrical Transformer theory and concepts

    1. How transformer works

    A transformer as a static device uses the electromagnetic induction principle of Faradays’ Law of Electromagnetic induction. In this case, there is no movement to get the relative motion between the constant flux and the conductor. Instead in transformer the flux is not fixed or constant but varying to get the relative effect.
    The transformer transfers energy from primary to secondary through electromagnetic induction. These primary and secondary windings are coupled by mutual magnetic flux. The essence of transformer action requires only the existence of time-varying mutual flux linking two windings.

    An alternating voltage is connected to the primary coil. These create flux in the coil. As the voltage is alternating or time varying so is the produced flux. These time-varying flux produces induced the voltage in the secondary winding when it cuts through the secondary coil or winding.
    • The transformer works on the theory of Faraday’s Laws of electromagnetic induction.
    • The main important factor is to maintain the controlled difference between the number of primary turns and secondary turn.

    2. How Energy is transferred from primary winding to secondary winding in transformer

    The net energy transferred is same for primary circuit and secondary circuit (discarding the losses and considering that all the primary magnetic flux are associated with the secondary circuit.).
    Both the primary power and secondary power in the transformer is same, all is varied is the primary & secondary – voltage and current. Also, other parameters like frequency remain unchanged between primary and secondary windings.

    3. Transformer formula

    Electrical transformer formula
    Complete formula of transformer – taken from Wikipedia.
    Vp= primary voltage, Ip=primary current, Np=number of primary turn.
    Vs= Secondary voltage, Is=secondary current, Ns=number secondary turn.
    (Np/Ns)=(Vp/Vs)=(Is/Ip)

    4. How the voltage and current is changed between the primary and secondary

    The change in voltage from primary to secondary is done by the number of coil turn variation in primary and secondary.
    Transformer coil turn
    Transformer coil turn

    A transformer works on the Faraday’s law of induction, we can describe voltage and current change in the transformer by the following manner.
    First, we consider that all the flux from primary circuit is involved in the secondary circuit. That is there is no loss of magnetic flux, which is the case in reality for the modern design of transformer.
    1. Change in voltage Now as the magnetic flux is constant what left from the Faraday’s formula is the number of turns (N) and voltage (V). The relation is “voltage varies proportionally with the number of turns. “ To increase the number of turns, the voltage will be increased. Decreased the number of turns voltage will be decreased.
    2. Change in current As per Voltage and current relation, voltage and current are inversely related. If the voltage is increased then the current will be decreased and vice versa.
    By properly proportioning the number of primary and secondary turns, almost any desired voltage ratio, or the ratio of transformation, can be obtained.
    The most important factor of the transformer is its difference between the number of turns in primary and secondary. This difference defines the transformer functional rating.

    Transformer construction

    1. Basic construction of transformer

    A basic transformer has the simplest construction with the primary winding set, secondary winding set, and core. The core is the medium for passing the magnetic flux from primary winding to secondary winding. Generally, iron core is used because it has higher permeability for magnetic flux. It means heat transfers better in iron than in wood and same as magnetic flux transfers or passes better in iron core then the air.

    2. Why there is iron core instead of air core in transformer

    Time-varying mutual flux links both primary and secondary winding in the transformer. It is required that most of the flux is to be confined to a definite, high-permeability path linking the windings. Now with air or it is not possible but with the core of iron or other ferromagnetic material, the coupling is effectively done. Because most of the flux in the iron core is confined to a definite, high-permeability path linking the windings.
    [adcc]

    3. Iron core in transformer-

    As the iron core is also under the flux variation in transformer there is some voltage induced in the iron core. This voltage is called the eddy voltage and in result, there is a current named eddy current flow in the iron core. These results in heating up the core. With a solid iron core, the eddy current is high.
    Stack of laminated core of transformer.
    A stack of the laminated core of the transformer.
    To avoid this solid iron core is not used. The thin iron core is laminated to make it non-conductive. Then this thin laminated core is stacked by several to get the complete iron core structure. With this modification, eddy current is reduced but the magnetic property of the iron core remains unchanged.
    To reduce the losses caused by eddy currents in the core, the magnetic circuit usually consists of a stack of thin lamination.

    4. Materials of iron core of transformer-

    • Silicon steel for low cost, low core loss, and high permeability at high flux densities (1.0 to 1.5 T).
    • Compressed powdered ferromagnetic alloys known as ferrites- used in the core of small transformer used in communication circuits at high frequencies and low energy levels.
    More Information

    মাত্র 2200 টাকায় তৈরি করুন আপনার IPS



    মাত্র 2200 টাকায় তৈরি করুন আপনার IPS আপনি নিজেই । বর্তমানে বিদ্যুতের যা অবস্থা তাতে IPS এর বিকল্প নাই । প্রথমে বলে রাখি যাদের ইলেক্ট্রনিক্সের উপর টুকটাক কাজ করার অভিজ্ঞতা আছে তাদের জন্য এই টিউন । আর যাদের ইলেক্ট্রনিক্স নিয়ে জানার প্রবল আগ্রহ আছে তারাও দেখতে পারেন । আর এর বাইরের যে কেউ পড়তে পারেন তবে বুঝতে না পারলে কতৃপক্ষ দায়ী নয় ।

    ইলেক্ট্রনিক্স কাজের জন্য যা প্রয়োজন

    • ১। সোল্ডারিং আয়রন
    • ২। লীড
    • ৩। রজন
    • ৪। স্ক্রু ড্রাইভার, প্লেয়ার্স (প্লাস)
    • ৫। ড্রিল মেশিন

    IPS তৈরিতে যা লাগবে

    • ১। একটি IPS বক্স
    • ২। দুইটি On Off সুইচ
    • ৩। দুইটি ফিউজ ও ফিউজ হোল্ডার
    • ৪। 3 pin চকেট
    • ৫। কমপিউটার CPU এর একটি পাওয়ার তার ( 3 pin প্লাগের জন্য )
    • ৬। প্রয়োজনীয় স্ক্রু ও প্রয়োজনীয় সংযোগ তার
    • ৭। একটি ট্রান্সফরমার (12-0-12V to 240V)
    • ৮। একটি Relay সুইচ
    • ৯। একটি Blank সার্কিট বোর্ড ( ব্যারো বোর্ড )
    • ১০। দুইটি Hit sink
    • ১১। অনেক গুলো খুটি (সার্কিট বোর্ড বসানোর জন্য)

    সার্কিট তৈরি করতে যা লাগবে

    • ১। 4 টি FET ( IRFZ 44 )
    • ২। 2 টি IC ( CD4047 & 7809 )
    • ৩। 7 টি রোধ ( 4 টি 220 ওহম, 2 টি 2.2 k ওহম, 1 টি 10 k ওহম )
    • ৪। 1 টি ভেরিএবেল রোধ ( 100 k ওহম or 104)
    • ৫। 1 টি ক্যাপাসেটর ( 100nf or 104)
    • ৬। 2 টি ডায়োড ( 2A )
    পর্যায় ক্রমিক ভাবে ফটো দেখুন । আমার তৈরি করা IPS ।
    Circuit Diagram Clear দেখা না গেলে উপরের লিংক থেকে ডাউনলোড করুন

    কার্যপদ্ধতি :

    • প্রথমে IPS বক্স-এ দুইটি On Off সুইচ, ফিউজ হোল্ডার, 3 pin চকেট, কমপিউটার CPU এর পাওয়ার তার ইত্যাদি লাগাই ।
    • ***(পাওয়ার তার এর যে অংশ CPU তে লাগাই সে অংশ কেটে ফেলে দিন)
    • তারপর IPS বক্স এর মধ্যে ড্রিল মেশিন দিয়ে ছিদ্র করে ট্রান্সফরমার, Relay সুইচ, সার্কিট বোর্ড ( ব্যারো বোর্ড ) ইত্যাদি লাগানোর ব্যবস্থা করি ।
    • তারপর উপরের Circuit Diagram টি দেখে Blank সার্কিট বোর্ডে IC, রোধ, ক্যাপাসেটর, FET & ডায়োড ইত্যাদি ক্ষুদ্র যন্ত্রাংশ গুলো সোল্ডারিং করে সংযোগ স্থাপন করি ।
    IPS সম্পর্কিত কিছু গুরুত্বপুর্ন তথ্য এবং সার্কিটের পুরো ব্যাখ্যা জেনে নিন

    মুলতত্ত্ব :

    IPS এর মুল ভিত্তি হল ট্রান্সফরমার । ট্রান্সফরমারকে কেন্দ্র করে সবগুলো সার্কিট তৈরি হয় । ট্রান্সফরমারের কাজই হচ্ছে নিম্ন ভোল্টকে উচ্চ ভোল্টে বা উচ্চ ভোল্টকে নিম্ন ভোল্টে রুপান্তর করা । উদাহরন স্বরুপ বলতে পারি একটি উচ্চধাপী (12v to 240v) ট্রান্সফরমারে প্রাথমিক স্টেপে 12 ভোল্ট in করালে 240 ভোল্ট output হবে । তবে শর্ত থাকে যে 12 ভোল্ট A.C (ভোল্টেজ) হতে হবে । কারন ট্রান্সফরমার কখনো DC ভোল্টেজে কাজ করে না । আমরা ব্যাটারী থেকে যে ভোল্টেজ পাই তা হচ্ছে DC ভোল্টেজ । ট্রান্সফরমার যদি DC ভোল্টেজে কাজ করতো তবে ব্যাটারীর 12 ভোল্ট DC কে ট্রান্সফরমারের প্রাথমিক স্টেপে in করালে 240 ভোল্ট output পাওয়া যেত । কিন্তু ট্রান্সফরমার DC ভোল্টেজ সাপোর্ট করে না । তাই ব্যাটারীর DC ভোল্ট কে AC ভোল্টে রপান্তর করে ট্রান্সফরমারের প্রাথমিক স্টেপে in করানো হয় এবং এর ফলে 240 ভোল্ট output পাওয়া যায় । যে সার্কিট দিয়ে ব্যাটারীর 12 ভোল্ট DC কে 12 ভোল্ট AC বা 24 ভোল্ট AC তে রপান্তর করা হয় তাই হচ্ছে IPS সার্কিট ।

    এখন আসা যাক সার্কিট ব্যাখ্যায় :

    Driver Section

    এই অংশটির কাজ হচ্ছে একটি AC সিগন্যাল তৈরি করা ।
    এতে CD4047 একটি মাল্টিভাইব্রেটর IC আছে । যার 1,2,3 নাম্বার পা গুলো ব্যবহৃত হয় কম্পাংক নির্ধারণ করার জন্য । ভেরিএবেল রোধের মান 30 K ওহমের জন্য প্রায় 50 Hz কম্পাংক পাওয়া যায় । যা খুবই প্রয়োজনীয় । 4,5,6,14 নাম্বার পা গুলো হল ভোল্টেজ (+)। 7,8 ,9,12 নাম্বার পা গুলো হল ভোল্টেজ (-) । 10, 11 নাম্বার পা গুলো থেকে AC সিগন্যাল Output হয় । IC টিতে 12 ভোল্ট DC in করালেও কাজ করে তবে তাতে IC টি যে কোন মুহুত্বে নষ্ট হয়ে যেতে পারে, তাই IC টিতে 12 ভোল্ট এর পরিবর্তে 9 ভোল্ট DC in করানো হয়, যাতে IC টি নষ্ট হওয়ার সম্ভাবনা না থাকে । 12 ভোল্ট ব্যাটারী থেকে 9 ভোল্ট DC পাওয়ার জন্য 7809 মডেলের একটি রেগুলেটর IC ব্যবহার করা হয় ।
    ***ব্যাটারীর + প্রান্তটি Relay ও IPS on off সুইচ এর ভিতর দিয়েই Driver Section - এ আসে ।

    Power Section

    এর কাজ হচ্ছে Driver Section থেকে আসা AC সিগন্যাল কে বিবর্তিত ( Amplify ) করা ।
    এখানে রয়েছে 4টি FET, 2 টি Hit sink । প্রতিটি Hit sink-এ 2টি করে মোট 4টি FET লাগানো হয় । 2টি Hit sink এর জন্য System এর মধ্যে 2টি অংশ তৈরি হয় । FET এর তিনটি পা আছে এগুলো হল Gate, Source ও Drain .
    System এর ১ম অংশে FET এর Gate গুলো দিয়ে রোধের মাধ্যমে AC সিগন্যালের একপ্রান্ত input করানো হয় । System এর অপর অংশে FET এর Gate গুলো দিয়ে রোধের মাধ্যমে AC সিগন্যালের অন্যপ্রান্ত input করানো হয় । FET এর Source প্রান্ত গুলোর সাথে ব্যাটারীর ঋণাত্বক (-) প্রান্ত যুক্ত করা । Hit Sink এর সাথে FET এর Drain যুক্ত থাকায়, Hit Sink থেকেই FET এর Drain পাতের সংযোগ নেওয়া হয় । Hit Sink দুটির সাথে ট্রান্সফরমারের দুটি প্রান্ত যুক্ত করা হয় ।
    **** IPS এর ওয়াট বৃদ্ধি করার জন্য জোড়ায় জোড়ায় Hit Sink এর সাথে FET বৃদ্ধি করতে হবে, তবে শর্ত থাকে যে ট্রান্সফরমারের মান বাড়াতে হবে ।

    Transform Section

    এর কাজ সল্প মানের AC ভোল্টকে উচ্চ AC ভোল্টে রুপান্তর করা ।
    এটি একটি ট্রান্সফরমার যার প্রাইমারী স্টেপ এর প্রান্তীয় পাতে 24 ভোল্ট AC input করানো হয় । এর ফলে সেকেন্ডারী স্টেপে 220 – 260 ভোল্ট AC output পাওয়া যায় ।

    Auto On Off Section

    এর কাজ হচ্ছে বিদ্যুৎ চলে যাওয়ার সাথে সাথে IPS কে চালু করা । আবার বিদ্যুৎ আসার সাথে সাথে IPS বন্ধ করা এবং চার্জিং সিস্টেম চালু করা ।
    একটি Relay সুইচ এর মাধ্যমে এটি তৈরি করা হয় । বৈদ্যুতিক নিরাপত্তার জন্য input & output – এ ফিউজ ব্যবহার করা হয় ।

    সতর্কতা :

    • ১। ব্যাটারীর ধনাত্বক ও ঋণাত্বক প্রান্ত সঠিক ভাবে সংযোগ করুন ।
    • ২। 3 pin প্লাগ বা চকেটের মধ্যে L ও N সঠিক ভাবে সংযোগ করুন । L হচ্ছে hot প্রান্ত, N হচ্ছে          cool প্রান্ত ।
    • ৩। ব্যাটারীর তার গুলো যথাসম্ভব মোটা ব্যবহার করুন ।
    • ৪। IPS অন অবস্থায় ট্রান্সফরমারের Output লাইনে 220 - 260 V কারেন্ট থাকে । তাই ইলেকট্রিক শকের বিষয়ে সাবধান থাকবেন ।

    পরামর্শ :

    • ১। সার্কিটে কোন ইন্ডিকেটর লাইট দেখানো হয়নি । তাই বুদ্ধি করে IPS on, Charge On ইত্যাদি       ইন্ডিকেটর লাইট লাগিয়ে নিবেন ।
    • ২। Auto full Charge এর কোন সিস্টেম দেওয়া হয়নি । Auto full Charge এর জন্য ইলেক্ট্রনিক্স        দোকানে 60 টাকা দামের একটি সার্কিট পাওয়া যায় । যা আপনি সিস্টেমে সংযোগ করতে              পারেন ।
    • ৩। IPS এর Watt বৃদ্ধি করতে চাইলে FET এর পরিমার & ট্রান্সফরমারের মান বাড়াতে হবে।
    • ৪। যাদের বিদ্যুৎ লাইনের ভোল্টেজ কম থাকে তাদের ব্যাটারী চার্জ করতে একটু সমস্যা হতে             পারে । এক্ষেত্রে আলাদা ট্রান্সফরমার দিয়ে চার্জ করা উত্তম । ( সাদা কালো টিভির 18 ভোল্ট         এর ট্রান্সফরমার দিয়ে চার্জ করতে পারেন )
    • ৫। ব্যাটারী 50A থেকে 120A ব্যবহার করতে পারেন । অন্য ভাবে বলা যায় 11 প্লেট থেকে 21 প্লেট ব্যাটারী ব্যবহার করতে পারেন ।
    এইতো হয়ে গেল আপনার IPS ।

    Types of Capacitor

    The types of capacitors available range from very small delicate trimming capacitors using an oscillator or radio circuits, up to large p...